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Abstract 

An analysis solution method (ASM) is proposed for analyzing arbitrarily shaped 

planar cracks in two-dimensional (2D) hexagonal quasicrystal (QC) media. The 

extended displacement discontinuity (EDD) boundary integral equations governing 

three-dimensional (3D) crack problems are transferred to simplified 

integral-differential forms by introducing some complex quantities. The proposed 

ASM is based on the analogy between these EDD boundary equations for 3D planar 

cracks problems of 2D hexagonal QCs and those in isotropic thermoelastic materials. 

Mixed model crack problems under combined normal, tangential and thermal 

loadings are considered in 2D hexagonal QC media. By virtue of ASM, the solutions 
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to 3D planar crack problems under various types of loadings for 2D hexagonal QCs 

are formulated through comparison to the corresponding solutions of isotropic 

thermoelastic materials which have been studied intensively and extensively. As an 

application, analytical solutions of a penny-shaped crack subjected uniform 

distributed combined loadings are obtained. Especially, the analytical solutions to a 

penny-shaped crack subjected to the anti-symmetric uniform thermal loading are first 

derived for 2D hexagonal QCs. Numerical solutions obtained by EDD boundary 

element method provide a way to verify the validity of the presented formulation. The 

influences of phonon-phason coupling effect on fracture parameters of 2D hexagonal 

QCs are assessed.  

Key words: two-dimensional hexagonal quasicrystal; three-dimensional; thermal 

effect; planar crack; analytical solutions; penny-shaped crack 

 

1. Introduction 

Shechtman’s discovery in 1982 of a quasiperiodic crystal with sharp diffraction 

images of non-crystallographic symmetry [1] upset the prevailing views on the atomic 

structure of matter. This kind of quasiperiodic crystal was subsequently named by 

quasicrystal (QC) [2] which lead to the redefinition of crystals in classical 

crystallography, in which a solid material is either crystals or amorphous [3]. Since 

then, the decagonal [4], dodecagonal [5], and octagonal [6] QC phases, were 

synthesized and discovered in the laboratory. In 2009, a natural quasicrystal in 
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icosahedral phase (63%Al-24%Cu-13%Fe), was first found in a rock sample by Bindi 

et al. [7]. Up to 2015, the discovery of another type of natural quasicrystal with 

decagonal symmetry was reported [8]. Besides the above solid QCs, these 

quasiperiodic structures with twelve-fold and eighteen-fold symmetries were found in 

polymers, nanoparticle mixture and colloids, which were named soft matter QCs 

[9-11]. The 2011 Nobel Prize in chemistry was awarded to Shechtman owing to his 

exciting discovery. 

QC solids with specially arranged atoms, have unique physical, chemical and 

mechanical properties, i.e. low surface energy, low coefficient of friction low 

electrical and thermal conductivity, good wear and corrosion resistance, high hardness, 

just to name a few [12]. Owing to these meritorious properties, several quasicrystal 

materials have been suggested for possible technological applications, especially in 

surface modified coatings and particulate-reinforcing phase for composites [13-15]. 

On the other hand, possible application of QC materials has been pointed out for 

various areas of energy savings, namely thermal insulation, light absorption, power 

generation and hydrogen storage [16]. Recently, the discovery of superconductivity in 

QCs, which is ubiquitous in many crystals, was reported by Kamiya et al [17]. In 

short, QCs have become a new class of functional and structural materials and have 

many prospective engineering applications. On account of the engineering 

significance and academic value, the study of QCs, has attracted considerable interest 

in the fields of solid-state physics, crystallography, materials science, applied 

mathematics, and solid mechanics [18].  



4 
 

Despite the bright potentials of QCs, the elasticity, defects and other subjects 

related to their mechanical behaviors have brought new challenge to researchers of 

solid mechanics [19,20]. Based on Landau density wave theory [21], two class of 

physical fileds, phonon and phason fields, were suggested to describe the mechanics 

of QCs in particular their elasticity. Since then the elastic behavior of QCs has been 

investigated by analysis many scholars [22-24]. According to the generalized Hooke’s 

law to the elasticity of QCs [18,25], the fundamental equations of quasicrystals were 

expressed in differential form by Ding et al. [25], and the associated boundary value 

or initial-boundary value problems were well posed. 

The analysis of QCs’ crack problems, as a critical problem in solid mechanics, 

has attracted attention by many researchers. Due to the introduction of the extra 

unknown quantities and governing equations in the phason field, it is difficult to 

conduct crack analysis of QCs [26-28]. From the point of view of the quasiperiodic 

directions, QCs are classified by, respectively one-, two-, and three-dimensional QCs. 

2D QCs in a 3D body have the atom arranged quasiperiodically in a plane and 

periodically in the orthogonal. There are ten systems, i.e. triclinic, monoclinic, 

orthorhombic, tetragonal, trigonal, hexagonal, pentagonal, decagonal, octagonal and 

dodecagonal systems, and 57 point groups in 2D QCs [29]. Mikulla et al. studied 

crack propagation in 2D decagonal QCs [30]. Using Fourier transform and dual 

integral equations theory [31], Zhou and Fan [32] calculated the displacement and 

stress fields, stress intensity factor and strain energy release rate for a Mode I Griffith 

crack in 2D octagonal QC media. Li et al. [33] investigated the asymptotic behaviour 
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of the stress around the Griffith crack tip in a 2D decagonal QC solid. By 

decomposing crack problem into a plane strain state superposed on anti-plane state 

problems, Guo and Fan [34] studied the Mode II crack problem of 2D decagonal QCs. 

Using a perturbation method, Peng and Fan considered an infinite 2D decagonal QC 

weakened by a circular crack and obtained the uniformly valid asymptotic solutions 

for the Mode I loading [35]. A meshless method, named Meshless local 

Petrov-Galerkin method (MLPG) was proposed by Sladek et al. [36] to investigate 

general crack problems in finite-size 2D decagonal quasicrystals. The references 

mentioned above focused on 2D plane or anti-plane crack problems only. There is less 

literature about 3D fracture problems of these QCs. However, crack problems should 

be of three-dimensional nature in practice.  

Only since general solutions for 3D problems of 2D hexagonal QCs were given 

by Gao and Zhao [37], some research efforts have been made on the 3D crack 

analysis of 2D hexagonal QCs. Gao and Ricoeur [38] analytically studied the 3D 

problems associated with a spheroidal quasicrystalline inclusion embedded inside an 

infinite dissimilar quasicrystalline matrix subject to uniform loadings at infinity. As 

further developments to the work conducted by Gao and Zhao [37], Yang et al. [39] 

included thermal effect to the problem and presented the associated general solution 

of 2D hexagonal QCs. As an application of the general solution, they dealt with a 

penny-shaped crack problem with crack surface uniformly distributed temperature 

loadings. With the help of these general solutions in terms of quasi-harmonic 

functions [37,39] conjugated with the generalized method of potential theory, some 
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3D exact analyzes of planar crack in 2D hexagonal QCs were conducted, such as the 

cases of Model I crack [40] and symmetry temperature loadings [41]. Without 

considering thermal effects, Li et al. [42] took the phonon and phason displacement 

discontinuities as the unknown variables of generalized potential function method and 

first derived closed-form exact solutions to the elliptical crack problems for 2D 

hexagonal QCs. Zhao et al. [43] extended boundary integral equation method to 

investigate 3D planar crack problem for 2D hexagonal QCs. Due to hyper-singularity 

of extended displacement discontinuity (EDD) boundary integral equations derived by 

Zhao et al. [43], it is difficult to solve these integral equations analytically via the 

conventional methods. An EDD boundary element formulation was proposed by Li et 

al. [44] to study 3D planar crack problems of 2D hexagonal QCs with thermal effects. 

By virtue of EDD boundary element method, Li et al. [44] presented numerical results 

for rectangular, elliptical and penny-shaped crack.  

Although, numerical method [36, 44, 45] is very convenient to solve all kinds of 

planar crack problems, corresponding analytical solutions are more advantageous in 

revealing coupling relationships between various physic fields and are of more 

theoretical and practical significance. The present paper explores an analysis solution 

method (ASM) to investigate 3D planar cracks of 2D hexagonal QCs. Some analytical 

solutions to 3D crack problems of these QCs are given for the first time. Following 

this introduction., the 3D planar crack problem considered is stated in Section 2. The 

EDD boundary integral equations derived by Zhao et al. [43] are presented in Section 

3, which are the basic equations to build our analytical approach of ASM. Section 4 
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presents the solution procedure of ASM for various kinds of crack modes. As an 

application of the ASM, the analytical solutions of a penny-shape crack with 

uniformly combined loadings applied on crack surfaces are presented in Section 5. In 

Section 6, the solution derived from the proposed ASM is verified by EDD boundary 

element method [44] and numerically presented to discuss the influences of 

phonon-phason couple effects on fracture parameters of 2D hexagonal QCs. Finally, 

some conclusions drawn from the present study are given in Section 7.  

 

2. Statement of the problems 

We describe a 2D QC medium, possessing the point groups of 6mm, 622, 26m , 

6/mmm and Laue class 10 [18], in a Cartesian coordinate system (x, y, z) with the 

quasiperiodic plane of QCs parallel to the plane oxy. An arbitrarily shaped planar 

crack S lies on the plane oxy, as shown in Figure 1. The upper and lower surfaces of 

the crack S are denoted by S+ and S−, respectively. The outer normal vectors of S+ 

and S− have the relation 

},1,0,0{}{ S −=+in   }.1,0,0{}{ S =−in                   (1) 

It is assumed that the arbitrarily extended tractions, namely combined loadings, are 

applied on crack surfaces. The extended tractions including not only conventional 

phonon tractions ip , but also phason tractions iq , and heat flux boundary value nh , 

have the same magnitude but opposite directions on the upper and lower crack 

surfaces, i.e.,  
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,||,||,|| ssssss −+−+−+ −=−=−= nniiii hhqqpp              (2) 

where  

( )
,

, , 1, 2, 3 or , , , ,

,

i ij j

i ij j

n i i

p n

q H n i j x y z
h h n

σ=

= =

=

                  (3) 

( )ijij Hσ  and ih  are the components of phonon (phason) stress and heat flux, 

respectively. According to Landau density wave theory, besides the conventional 

phonon fields, phason fields are introduced to determine the local rearrangement of 

atoms in a cell in QCs [19,25]. Identical to the standard elasticity of crystals, the 

phonon stress tensor is symmetric, i.e., jiij σσ = , however, the phason stress tensor is 

asymmetry, as jiij HH ≠ . For 2D QCs, the phonon stress has explicit components 

{ zxyzxyzzyyxx σσσσσσ ,,,,, } and phason stress { xzyzyxxyyyxx HHHHHH ,,,,, } 

[19,37].  

The existence of the crack causes the phonon (phason) displacements ( )wu , 

displacements and temperature change θ  across the crack surfaces to be 

discontinuous. We define that 

( ),,,or,3,2,1,
SS

zyxiuuu iii =−= −+               (4a) 

( ),,or,2,1,
SS

yxjwww jjj =−= −+                (4b) 

,
SS −+ −= θθθ                                   (4c) 

These are referred to as the extended displacement discontinuities (EDDs) to 

characterize fracture properties of 2D hexagonal QCs. Additionally, the basic 

equations including the constitutive equations and the equilibrium equations for are 

specified in Appendix A. 
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3. EDD boundary integral equations for 3D arbitrarily shaped 

planar crack problems 

Using Green’s functions of unit point EDDs and the superposition principal [45], 

Zhao et al. [43] obtained the EDD boundary integral equations for 3D arbitrarily 

shaped planar crack problems in 2D hexagonal QC media, i.e., 

( )( ) ( )( )[ ]
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( ) ( ),d33 x,ypξ,ηS
r
u

L z
S

z −=∫
+

                                          (5e) 

 ( ) ( ),d3h x,yhξ,ηS
r

L n
S

−=∫
+

θ
                                           (5f) 

where    

( ) ( ) ,22 yxr −+−= ηξ                           (6a) 

      ( ) ( ) ,sin,cos
r

y
r

x −
=

−
=

ηφξφ                       (6b) 

and ,, wijij LL 3L and hL  are the material-related constants which are listed in 
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Appendix B, or can be found in Ref [43].  

EDD boundary integral equations (5a-f) are the governing equations of crack 

boundary value problems stated in Section 2. In Eq. (5), the problem can be 

decoupled into three cases: 1) crack problem under normal loading which is governed 

by Eq (5e); 2) crack problem under the phonon (phason) tangential loadings governed 

by Eqs(5a-d); 3) crack problem under the thermal loadings governed by Eqs. (5a-d) 

and (5f) [43]. The complexity of Eq. (5) makes it difficult to obtain analytical solution 

via conventional methods, especially for Eq. (5a-d) governing the tangential problem. 

The numerical method based on EDD boundary element method proposed by Li et al. 

[44] can be used to solve Eq. (5).  

When the EDDs are determined by solving Eq. (5), the extended stress intensity 

factors can be obtained in term of the following relationships [43].  

,lim2 30

F
I ρππ

ρ zuLK
→

=                         (7a) 
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ρ
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wLuLK

wLuLK

+=

+=
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→                 (7b) 
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22220

H

21210

H
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ρ
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xwx

wLuLK
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+=

+=
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→                 (7c) 

,lim2 h0h ρθππ
ρ

LK
→

=                          (7d) 

where F
IK  is Mode I phonon stress intensity factor, ( )H

II
F
II KK  is Mode II phonon 

(phason) stress intensity factor, ( )H
III

F
III KK   is Mode III stress intensity factor, hK  is 

heat flux intensity factor, and ρ  is the distance of a point on crack face to the crack 

border. 
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4. Solution procedure of ASM for an arbitrarily shaped planar 

crack  

4.1. Crack surfaces subjected to normal loading 

The problem with crack surfaces subjected to normal loading ( ( )yxpz , ) is 

governed by Eq. (5e). Consider the same problem but for isotropic elastic materials, 

the corresponding displacement discontinuity boundary integral equation takes the 

form [47,48] 

( ) ( ),,d
18 S

32 yxpS
r
uE

z

e
z −=

− ∫
+νπ

                 (8) 

where E and ν are Young’s modulus and Poisson’s ratio, respectively, and superscript 

“ e ” represents corresponding quantity in the isotropic elasticity. In addition, the Mode 

I stress intensity factor can be obtained through [47] 

( ) .2lim
18 02I

e
z

e uEK
ρ
π

ν ρ→−
=                        (9) 

Comparing Eq. (5e) to Eq. (8), we can see that for 2D hexagonal QCs, the unknown 

quantity zu  in Eq. (5f) can be solved by 

 ( )2
3

1 .
8 1

e
z z

Eu u
L π ν

=
−

                       (10) 

Substituting Eq. (10) to Eq. (7a), the Mode I stress intensity factor for 2D hexagonal 

QCs is obtained as 

.I
F
I

eKK =                            (11) 

It should be noted that the crack solutions of EDD, or F
IK  for 3D planar crack 

problems in 2D hexagonal QCs media can be calculated by Eqs. (10) and (11) with 
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the corresponding solutions of isotropic elastic materials. 

4.2. Crack surfaces subjected to tangential loadings 

From Eq.(5), we find that the temperature discontinuity θ  exists in Eqs. (5a-d) 

and (5f), but it only depends on heat flux crack boundary value in Eq.(5f). If there is 

no thermal loading, θ  becomes zero. Therefore, the crack problem under the 

phonon (phason) tangential loadings is only governed by Eqs. (5a-d). It is easily seen 

that Eqs. (5a-d) are coupled with each other which makes the solution finding more 

complicated. In order to simplify Eqs. (5a-d), we introduce the following complex 

quantities: 

,i,i
,i,i

yxyx

yxyx

qqQppP
wwWuuU

+=+=

+=+=
                       (12) 

where ,1i −= with this introduction, equations (5a-d) are simplified and transferred 

to the following concise form   
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where ,2222 yx ∂∂+∂∂=∆  ,i yx ∂∂+∂∂=Λ and 
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By denoting  
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equations (7b) and (7c) become 
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For isotropic elastic media, we have [47] 
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where ( )yxT ,  is the tangential loading, and  

( )
( ) ( ) .

116116
2lim2i 220IIIII ρ

νπ
ν

νπ
νππ

ρ 







−

+
−
−

=+=
→

UEUEKKK eee    (18) 

We suppose there are two different isotropic elastic media with corresponding 

quantities 111 ,, TE ν  and 222 ,, TE ν , and the tangential loadings 1T  and 2T  have 

the same magnitude with phonon and phason loadings, i.e., ( ) ( ),,,1 yxPyxT =  and 

( ) ( )yxQyxT ,,2 = . According to Eqs. (17) and (18), one has 
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and 
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it is found that Eqs. (13) and (19) are identical in terms of structure. Thus, U  and 

W  can be directly obtained from the corresponding elastic solutions from Eq.(21a), 

or Eq.(21b) as follows 
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To make Eqs. (22a) and (22b) identical with each other, 1ν  and 2ν  should satisfy 

the following relationship 
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Observing Eqs. (19), (21) and (23), one can find that if WU  is constant, 1ν  and 

2ν  can be solved by Eq.(23). 

Substituting Eq. (21) into Eq. (16) and comparing it with Eq. (20), we can obtain  
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Note that from Eq. (24), it looks like that the phonon and phason stress intensity 

factors ( F H,K K ) are decoupled and depend on the phonon and phason loadings, 
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respectively, however, from Eq. (20), expressions of both eK1  and eK2  include 1ν  

and 2ν , respectively. Since 1ν  and 2ν  are coupled with each other as indicated in 

Eq. (18) and must depend on both phonon and phason loadings, and FK  and HK  

are actually coupled. With 1ν  and 2ν  being determined by Eq. (23), FK  and HK   

can be calculated by Eq. (24) directly using the corresponding solutions of purely 

elastic material which has been studied intensively and extensively. 

4.3. Crack surfaces subjected to thermal loading 

We assume that only thermal loading is applied on the crack surfaces. This 

problem is governed by Eq.(5a-d) and (5f). However, the temperature discontinuity 

θ  depends on Eq. (5f) only. For the same problem for isotropic thermoelastic 

material, there is a similar governing boundary equation [47,48] as  

( ),,d
4 3 yxhS

r n
S

e

=∫
+

θ

π
β                        (25) 

and the heat flux intensity factor is 

,lim2
4 0h ρ

θ
πβ

ρ →
−=eK                       (26) 

where β  is the coefficient of heat conduction. Comparing Eq. (5f) to Eq. (25), the 

temperature discontinuity θ  for 2D hexagonal QCs can be solved by 

,
4 h

e

L
θ

π
βθ −=                             (27) 

and the heat flux intensity factor is 

.hh
eKK =                              (28) 

Substituting Eq. (27) into Eqs. (5a-d) with Eq. (13) yields 



16 
 

,d1
4

d11

S2

1

hS 22

112

22

11 ∫∫
++

Λ







=
































Λ+
















∆ S

rL
L

L
S

W
U

LL
LL

rW
U

LL
LL

r
e

w

w

w

w θ
π
β

θ

θ  (29) 

which can be regarded as a tangential problem just like the subsection above. 

Therefore, two systems of isotropic material are used. The displacement discontinuity 

boundary integral equations for isotropic thermoelastic problem [48] are transferred to  
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where α  is the coefficient of linear thermal expansion, and superscript “ θ ” here 

means that related physic quantities are induced by thermal loading. Comparing Eq. 

(29) to Eq. (30), corresponding displacement discontinuities θU and θW  can be 

solved by  
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Note that 1ν and 2ν  should also satisfy Eq. (23). The corresponding thermal stress 

intensity factors for 2D hexagonal QCs can be derived by inserting Eq. (26) into Eq. 

(16) or Eqs. (7b, c) as 
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Making a comparison between Eqs. (20) and (32), one has 
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which shows thermal stress intensity factors for 2D hexagonal QCs can also be 

obtained from corresponding solutions for isotropic thermoelastic materials. 

5. Application of ASM to penny-shape crack problems  

Suppose the planar crack is a penny-shaped crack centered at the origin of the 

coordinate system with radius a. For an isotropic thermoelastic material, the 

penny-shaped crack surface is subjected to uniformly distributed combined loadings  

( ) ( ) ( ) ,,,,,i, 0i hyxhpyxppeppyxP nzzyx −===+= φ           (34) 

where 0φ  is defined by .tan 0 xy pp=φ  As the crucial quantities in fracture 

mechanics, the solutions of EDDs and extended stress intensity factors for the 

isotropic thermoelastic materials can either be found in many literatures [48-50] or 

given here directly as follows 
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for normal displacement discontinuity, or named crack opening displacement; 
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for tangential displacement discontinuity induced by tangential loadings; 
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for temperature and displacement discontinuities induced by thermal loading, in 

which ,22 yxr += yx=φtan , extended stress intensity factors are 

,2I z
e paK

π
=                                    (36a) 
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13 hII haKahaEK
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αθ =
−

=                      (36c) 

where 0φφφ −=∆ . 

For 2D hexagonal QCs, when crack surfaces are applied with uniformly 

distributed combined loadings, as 

( ) zz pyxp =, ,                              (37a) 
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( ) ., hyxhn −=                                (37c) 

We can immediately obtain corresponding crack solutions for 2D hexagonal QCs 

according to ASM presented in Sections 4,  

For Mode I case, using potential function method and complex derivation, Wang 

et, al. [41] gave an analytical solution for penny-shaped crack. Here, we obtain 

corresponding crack solutions, e.g. the crack opening displacement by substituting Eq. 

(35a) into Eq. (10) 

 ,22
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3

ra
L

pu z
z −=

π
                      (38) 

and get Mode I stress intensity factor by virtue of the substitution of Eq. (36a) into Eq. 

(11) 
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Eq. (38) and Eq. (39) are equivalent to Eqs. (40) and (41) in Ref. [40].  

Gao and Ricoeur [38] derived an analytical solution of shear field stress intensity 

factors according to the limited case of spheroidal inclusion. Making use of ASM, the 

related crack analytical solutions regarding tangential phonon and phason loadings 

can also be easily established. Combining Eq. (35b) and Eq. (22a), one can obtain 

tangential EDDs for crucial fracture quantities as,                             
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which show that both phonon and phason loadings influence the tangential EDDs. It is 

also revealed that phason fields influence on the deformation and fracture of the 

material. On the other hand, the substitution of Eq. (36b) into Eq. (24) yields 
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or in a traditional form like 
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where 1ν  and 2ν  are determined by Eq. (23) and solved as 
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From Eqs. (41) and (42), it is found that Mode II and III field intensity factors are 

very brief in structure, and the phonon and phason loadings are decoupled in Mode II 

and III field intensity factors. However, when inserting Eq. (43) into (42), we have 
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where ijκ  are the material dependent and are defined by 
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Observing Eq. (44), we find that the phonon and phason loadings are coupled and 

they influence field intensity factors simultaneously. 

For thermal loading, namely uniform anti-symmetric heat flux applied over the 
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crack surfaces, to our knowledge, no analytical crack solutions for it are found in 

literature. This is due to the much-complicated coupling effects of the phonon, phason 

and temperature existing in this problem. It is convenient to be solved by utilizing 

ASM. Similarly, employing the relationship in Eq. (27) and corresponding solution 

for thermoelastic materials in Eq. (35c), the temperature discontinuity θ  induced 

by thermal loading is obtained as  

2 2
2

h

,h a r
L

θ
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= − −                        (46) 

and tangential EDDs are solved via the comparison between Eqs. (33) and (35c) 
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which shows thermal loading can induce both the phonon and phason fields. Because 

only radial EDDs are incurred by thermal loading which can be indicated in Eq. (47), 

thermal stress intensity factors must be Mode II cases, which is solved here by 

inserting Eq. (36c) into Eqs. (28) and (33), as      
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Equation (48) indicates that thermal loading induce not only phonon stress intensity 

factor but also phason stress intensity factor, and both stress intensity factors show 

difference between θ1L  and θ2L . Moreover, the heat flux intensity factor is solved 

by 

.2h haK
π

=                             (49) 
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6. Numerical results and discussions 

In this section, the results of analytical solutions to the penny-shaped crack are 

numerically presented to verify the proposed ASM and to assess the influences of 

phonon-phason coupling effects on fracture parameters of 2D hexagonal QCs. The 

material constants are chosen as those given in Ref. [38] and listed in Table 1. Making 

use of these material constants and the definitions in Re. [43] and Appendix B, the 

material-related constants ,, wijij LL 3L and hL  in EDD boundary integral equations (5) 

are calculated and listed as follows,  
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GPa,4.814327 3 =L                               (50c) 

which are the basic elements to construct the analytical crack solutions by ASM. 

6.1. Validity of the present solutions 

Using EDD boundary element method, Li et. al. [44] given some useful 

numerical solutions for rectangular, elliptical and penny-shaped crack problems, in 

which numerical results about penny-shaped crack with uniform coupled loadings 

were used to verify the analytical solutions obtained via ASM. Figures 2-7 show the 

distribution of normalized EDDs across penny-shaped crack surfaces under normal, 
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tangential, and thermal loadings. Tables 2 tabulates all extended fields intensity 

factors, which are normalized by 
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The analytical solutions by ASM are in great agreement with the numerical solutions 

obtained by EDD boundary element method. To some extent, comparisons of these 

solutions also validate EDD boundary element method proposed by Li et al. [44].  

6.2. Discussion of fracture parameters 

As we all known, EDDs and extended stress intensity factors are main fracture 

parameters and of high significance in fracture analysis. We can see from Figure 3 

that phonon displacement discontinuity xu  along the x-axis decreases 

monotonically with the increase of the applied phason loading. From the point of 

physic, the phonon displacement represents the deformation of the material. Thus, we 

can draw a conclusion that the phason loading can alleviate propagation of crack 

through reducing phonon displacement discontinuity, however, it may promote the 

quasiperiodic rearrangement of atoms, as predicted form Figure 4. On the other hand, 
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when applying thermal loadings on the crack surfaces, we can see from Figure 6 and 7 

that the generated phonon displacement discontinuities across crack surfaces are 

opposite to the phason, that is, the influences of thermal effect are difference on the 

phonon and phason fields.   

As regard to extended stress intensity factors, normal phonon stress loading can 

only induce Mode I phonon stress intensity factor, as discussed in above sections and 

the literatures [40,43,44,51], which is a simple case and not addressed here. What we 

are most concerned is the coupled field intensity factors, related to Mode II, III cases, 

and thermal case, whose corresponding analytical solutions are given firstly in this 

paper. To quantify the effect of the tangential phonon and phason loadings on the 

Mode II, III field intensity factors, we convert Eq. (39) to the following form  
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where ( )4,3,2,1=iiς  are the four ratios of ijκ  as 
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and 1ς , 2ς , 3ς , 4ς  characterize the effect of phason loading on F
IIK , the effect of 

phonon loading on H
IIK , the effect of phason loading on F

IIIK , the effect of phonon 

loading on H
IIIK , respectively. When the values of iς  are zero, the phonon and 

phason stress intensity factors are decoupled and depend directly on the phonon and 
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phason loadings, respectively. When the values of iς  are unit, these two stress 

intensity factors are coupled and influenced by phonon and phason loadings 

simultaneously. On the other hand, a positive value of iς  represents these two 

loadings have a same effect on corresponding stress intensity factor and vice versa. 

When adopting the material-related constants in Eq. (50), we can obtain 

,0.0231 ,0.1031,0.0640  ,0.0731 4321 −===−= ςςςς           (54) 

which show there are complex effects of the tangential phonon and phason loadings 

on corresponding field intensity factors for the considered 2D QCs. 

Finally, for thermal stress intensity factors, Mode II cases are induced only by 

thermal loading. Form Eq. (43), the difference between phonon stress intensity factor 

( )ther
F
IIK  and phason ( )ther

H
IIK  are caused by material-related constants θ1L  and 

θ2L , which have opposite quantities for present constants in Eq. (50). This reveals 

that thermal loading also has different effect on these two types of thermal stress 

intensity factors. 

 

7. Conclusion 

Considering combined normal, tangential, and thermal loadings for Model I, II, 

and III crack problems, an analysis solution method, namely ASM, is proposed for 3D 

planar cracks of arbitrary shape in 2D hexagonal QC media. EDD boundary integral 

equations governing 3D crack problems are transferred to integral–differential forms 

by introducing some complex quantities. By comparing these simplified governing 
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equations, some significant relationships are revealed from the solutions of planar 

crack problems for 2D hexagonal QC media and those for isotropic thermoelastic 

media. The solutions to 3D planar crack problems of 2D hexagonal QCs are 

formulated by means of to the solution approach to the corresponding solutions of 

isotropic thermoelastic materials.  

Applying presented ASM, analytical solutions of a penny-shaped crack under 

uniformly disturbed combined loadings are obtained. Especially, analytical solutions 

of Model II, and III problems considering thermal effect are first presented for 2D 

hexagonal QC. EDD boundary element method proposed by Li et al. [44] is 

employed to verify the obtained analytical solutions, and great agreement has been 

reached. Numerical results are obtained to investigate the influences of 

phonon-phason couple on fracture parameters of 2D hexagonal QCs. Four 

parameters ( )4,3,2,1=iiς  defined by ratios of ijκ  are introduced to quantify the 

effect of the tangential phonon and phason loadings on corresponding field intensity 

factors. Additionally, the result indicates that anti-symmetrically thermal loading can 

only induce Mode II phonon and phason stress intensity factors, and they only have 

difference on the material-related constants between θ1L  and θ2L .  

The present analytical solutions may serve as benchmarks for computational 

fracture mechanics of 2D hexagonal QCs. The proposed method in this paper 

provided a way to investigate crack problems of 2D hexagonal QCs through their 

comparison to corresponding solutions (regardless of analytical or numerical 

solutions) of isotropic thermoelastic materials.  
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Appendix A: Basic equations for 2D hexagonal QCs [39, 43] 

The equilibrium equations in the absence of a body force and body heat source 

are 
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The constitutive equations used to describe the relationships of extended stresses and 

extended displacements are  
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where ( )ij ic K and iR  are the phonon (phason), phonon-phason coupling elastic 

constants; ijλ and ijβ  denote thermal modulus and coefficients of heat conduction, 

respectively. The following relations for transversely isotropic hold 

11 1̀2 1 2
66 6 1 2 3 6, , .

2 2
c c R Rc K K K K R− −

= = − − =           (A.3) 
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Appendix B: Material related constants [43] 

The related material constants in EDDs boundary integral equations are listed as 

follows  
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where ijc , ijf , ijβ , ijω , *
ijA , *

ijB , *
iC ,  and *

iD  are the material-related constants 

defined in Ref. [43], and ( )2,11 =is i  and ( )3,2,12 =js j  with positive real parts are 

eigenvalues determined by the following eigenvalue equations, respectively,[37] 

,02
2

4
2

6
2 =−+− dcsbsas                 (B.2a) 

,02
1

4
1 =+− gfses                     (B.2b) 

where the constants fedcba ,,,,,  and g  are defined in the general solution 

derived by Yang et al. [39]. It should be pointed out that the governing EDD boundary 
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integral equations are obtained by Zhao et al. [44] via the general solution with 

distinct eigenvalues.  
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Figure captions list： 

Figure 1. Arbitrarily shaped planar crack in the quasiperiodic plane oxy of 2D 

hexagonal QCs 

Figure 2. Phonon displacement discontinuity zu  for normal loadings in the radial 

direction of penny-shaped crack 

Figure 3. Phonon displacement discontinuity xu  for different applied tangential 

loadings in the x-axis direction  

Figure 4. Phason displacement discontinuity xw  for different applied tangential 

loadings in the x-axis direction 

Figure 5. Temperature discontinuity θ  in the radial direction of penny-shaped 

crack for thermal loading  

Figure 6. Phonon displacement discontinuity ru  in the radial direction of 

penny-shaped crack for thermal loading 

Figure 7. Phason displacement discontinuity rw  in the radial direction of 

penny-shaped crack for thermal loading 

 

Table captions list： 

Table 1. Material constants for a particular 2D hexagonal quasicrystal 

Table 2. Normalized fields intensity factors for Mode I, II, and III with thermal effect 

considered at the ends of the x-axis 
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Figure 2. Phonon displacement discontinuity zu  for normal loadings in the radial 

direction of penny-shaped crack 



39 
 

x/a
0.0 0.2 0.4 0.6 0.8 1.0

Ph
on

on
 d

isp
la

ce
m

en
t d

isc
on

tin
ui

ty
 ||

u x||
/(1

0-4
a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

AS q=5 MPa
NS q=5 MPa
AS q=10 MPa
NS q=10 MPa
AS q=15 MPa
NS q=15 MPa

AS reperents analytical solution 
by ASM
NS reperents numerical solution 
by EDD-BEM in Re.[43]

p=5 MPa, pz=h=0
f0=p/4

 

Figure 3. Phonon displacement discontinuity xu  for different applied tangential 

loadings in the x-axis direction 
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Figure 4. Phason displacement discontinuity xw  for different applied tangential 

loadings in the x-axis direction 
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Figure 5. Temperature discontinuity θ  in the radial direction of penny-shaped 

crack for thermal loadings 
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Figure 6. Phonon displacement discontinuity ru  in the radial direction of 

penny-shaped crack for thermal loadings 
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Figure 7. Phason displacement discontinuity rw  in the radial direction of 

penny-shaped crack for thermal loadings 
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Table 1. Material constants for a particular 2D hexagonal quasicrystal 

Phonon elastic 

constants GPa100,GPa100
GPa50,GPa150,GPa200

1312

443311

==
===

cc
ccc

 

Phason elastic 

constants GPa20,GPa20
GPa20,GPa50

43

21

==
==

KK
KK

 

Phonon-phason 

coupling constants GPa5,GPa5
GPa5,GPa01

43

21

==
==

RR
RR

 

Thermal modulus )N/(Km10383.1),N/(Km10798.1 26
33

26
11 ×=×= λλ  

Coefficients of  

heat conduction 
)Km/(W3.5),Km/(W3.5 3311 == ββ  
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Table 2. Normalized fields intensity factors for Mode I, II, and III with thermal effect 

considered at the ends of the x-axis 

Normalized fields 
intensity factors 

Analytical solutions 
by ASM 

Numerical solutions 
by EDD-BEM [43] 

Relative error 
(%) 

F
IF  

1 1.019156 0.018796 

F
IIF  

0.383528 0.386987 0.893828 

F
IIIF  

0.323579 0.324310 0.225402 

H
IIF  

0.199334 0.200751 0.680241 

H
IIIF  

0.507769 0.509064 0.254388 

hF  1 1.017598 1.729366 

( )ther
F

IIF  
1 0.995833 0.418443 

( )ther
H

IIF  
1 1.008952 0.887257 
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